NEU GRAND LIBRARY
Opening Hours: Monday-Saturday, 08:00-20:00 | E-mail: library@neu.edu.tr
 

You are not logged in Show Basket
  Home     Advanced Search     Back  
  Brief display     MARC Display     Reserve  
Biomechanical evaluation of a fiber-reinforced composite prosthesis supported by implants with and without a microthread collar design (Meriç, Gökçe,)
Bibliographical information (record 265478)
Help
Biomechanical evaluation of a fiber-reinforced composite prosthesis supported by implants with and without a microthread collar design
Author:
Meriç, Gökçe, Search Author in Amazon Books

Publisher:
Elsevier,
Edition:
2010.
Classification:
WE103
URL:

http://library.neu.edu.tr:2048/login?url=http://dx.doi.org/10.1016/j.jds.2010.11.010
Detailed notes
    - Background/purpose: A fiber-reinforced composite (FRC) resin system was introduced as an alternative for implant-retained fixed dental prostheses (FDPs); however, the stress distribution in the bone around the implants which support the FRC-FDP has so far not been reported. The aim of this study was to investigate the biomechanical behavior of FRCFDPs supported by implants with different collar geometries. Materials and methods: A 3-dimensional finite element analysis method was selected to evaluate the stress distribution. FRC-FDPs were supported by 2 different dental implant systems with 2 distinct collar geometries: a microthread collar structure (MCS) and a non-MCS (NMCS). In separate load cases, 300-N vertical, 150-N oblique, and 60-N horizontal forces were simulated. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, the framework, and veneer material were calculated. Results: TheMCS model revealed higher compression stresses at the cortical bone than did theNMCS model under all 3 load conditions. Moreover, higher tensile stresses under the oblique loads at the cortical bone were shown with the MCS model. In eachmodel, stresses were much higher in the implanteabutment complex than in the cortical bone, and they were very low in the cancellous bone. Conclusion: Although additional experimental and clinical studies are needed, FRC-FDPs can be considered a suitable and alternative treatment choice for an implant-supported prosthesis. The implant design and geometry affect the load-transmission mechanisms.
Related links
Items (1)
Barcode
Status
Library
Section
EOL-801
Item available
NEU Grand LibraryOnline (WE103 .B56 2010)
Online electronic

NEAR EAST UNIVERSITY GRAND LIBRARY +90 (392) 223 64 64 Ext:5536. Near East Boulevard, Nicosia, TRNC
This software is developed by NEU Library and it is based on Koha OSS
conforms to MARC21 library data transfer rules.